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Abstract—Solar PV-storage hybrid resources are an attractive
way of reducing grid dependency for project developers when
collectively serving small communities. A well-structured charg-
ing schedule of the battery storage can improve the effectiveness
of the hybrid system by reducing the grid dependency at the
peak demand hours and improving the utilization of the battery.
Studying the correlation between load and solar curves helps to
identify periods at which short-term charging or discharging of
the battery can aid to those benefits. In this paper, a dynamic
charging schedule is proposed, where a nominal schedule is
created based on full day forecasting of load and solar output,
and further adjustments are made to the schedule based on the
hourly expected correlation between load and solar curves. The
proposed method is then tested on a test system based on actual
data for a period of one year. The results show that the proposed
approach can reduce the maximum power import from the grid,
overall cost of imports and improve the battery utilization.

Index Terms—hybrid resource, battery storage, charge
scheduling, solar load correlation, solar forecasting

I. INTRODUCTION

Hybrid Resources that combine solar PV and battery storage
are becoming increasingly popular among those who seek to
reduce dependency on the grid while consuming green energy
[1]. Owing to the high cost involved with battery storage,
hybrid resources are typically set up at larger scale involving
a community of solar customers [2]. Solar power purchase
agreements (PPA) designed for such communities allow cus-
tomers to buy power from third party project developers at a
lower rate than from the utility, by hosting the hybrid resource
at their premises without taking ownership of the system [3].
In rural areas where solar potential is high, local government
entities or aggregator entities can deploy a large-scale hybrid
system by installing rooftop solar PV panels at the homes of
the customers with a centralized storage system, prompting the
adoption of hybrid resources and letting the customers indulge
the benefits of PPA [4].

The charging schedule of the battery storage can influence
how well a hybrid system can contribute to reducing the
dependency on the grid and reducing the cost of electricity.
Battery storages are typically charged during the day when
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there is excess solar production, so that the hybrid resource
can continue to partially supply the demand after sunset.
Most prevalent methods of charging schedule is to use day-
ahead load and solar forecasts, and optimize battery charging
decisions for increased self-consumption [5] or peak load
shifting [6]. This way of charging can be ineffective on
days when the solar or load curves deviate significantly from
their forecasts. A dynamically changing charging schedule is
needed to address this uncertainty and utilize both resources
effectively. YanQi et al. proposed a method to make dynamic
changes to the day-ahead schedule based on the real time solar
output and storage availability [7]. All of these methods do
not take into account the inherent synchrony between solar
and load which can influence changes to forecasted load curve
[8]. Yang et al. proposed a method to make charging decisions
based on the correlation between historical load and solar [9].
However, their method creates a fixed repeatable schedule and
does not account for changes in correlation that might occur
in the immediate future.

In this paper, a two-step method to develop battery storage
charging schedule is proposed. Solar and load behavior for
the immediate future is forecasted, based on which nominal
start times for charging and discharging are decided at the
start of every day. This schedule is then further improved
by calculating correlation between solar output and load at
every hour from the forecast as well as historical data, and
making appropriate charging decisions. The proposed method
is presented in detail in Section II. It is then implemented on
a test system and its efficiency in fully utilizing the benefits
of hybrid systems is compared against multiple fixed charging
methods in the sections that follow.

II. METHODOLOGY

The proposed method to make the battery storage charging
and discharging decisions based on the correlation between
load and solar output is illustrated in Fig. 1. In this method, at
the start of every day, expected load and solar output behavior
for the whole day is forecasted based on the recent historical
data. From these forecasts, expected correlations are predicted,
and a nominal charging schedule is created with a single
charging start time and a single discharging start time. Then,
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Fig. 1: Correlation based dynamic charge scheduling method

at an hourly basis, predicted correlation values are refined
using historical correlation values, which is then used to make
further adjustments to the nominal charging schedule.

A. Solar and Load Forecasting

Expected load and solar output for a 24-hour period are
forecasted using the triple exponential smoothing technique
also known as the Holt-Winters method. This method is a
widely adapted statistical forecasting technique used in many
domains, including power systems where it has been used for
short-term load forecasting and solar PV power forecasting
[10]. It estimates the future data points based on their expected
level, trend, and periodicity. A simple, additive type of triple
exponential smoothing is given in a recursive format in (1)

Utn = At + Ny + C_pr14p(n—1) (D

Ui+n 1s the estimated point n time-steps away from the
current known point which is at t* time-step. p refers to the
number of time-steps between each repeating cycle (period).
The level component a;, trend component b;, and periodicity
component c¢; are obtained as in (2)-(4). From the recursive
format of these equations, it can be seen that the influence of
the preceding historical data points decays as it moves further
from the current point. Best values for coefficients «, 3, and
~ are determined by training on actual known values of the
selected time series.

ar = oy — ci—p) + (1 — a)(az—1 + be—1) 2
by = Blar — ar—1) + (1 — B)br_1 3)
ct =Yy — ar) + (L —y)ci—p “4)

Solar irradiance follows a 24 hour cyclic pattern, and
therefore the periodicity of solar output can be captured by
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Fig. 2: Solar output forecasting of a sample day using triple
exponential smoothing
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Fig. 3: Load forecasting of a sample day using modified
triple exponential smoothing

making p = 24 for the equations in (1)-(4). It is assumed
that 7 days of historical data would be enough to capture any
short-term trend that is present in the solar output. The triple
exponential smoothing method was tested on solar output data
obtained from a microgrid setup at Wichita State University,
scaled to represent a combined output of 1000 solar panels
[11]. Fig. 2 shows the prediction for solar output on Jan 5,
2021 based on a week-long historical data preceding it, and
the actual solar output seen on that day. It can be seen that
the predicted output is slightly smaller than the actual output
because of the low-solar output days that have occurred in the
preceding week.

Load forecasting is done slightly different from solar output
forecasting, as load behavior is likely to be more similar to
the data obtained during similar days of the week in previous
weeks. It is necessary to capture a weekly cyclic pattern in
addition to the daily cyclic pattern. To achieve this, triple
exponential smoothing is applied only to six preceding days,
and the resulting forecast is averaged with the actual load seen
seven days earlier, which would be from the same day of the
week. The prediciton for load on Jan 5, 2021 is given in Fig. 3.



B. Nominal charging schedule

Once the forecasting is done, a simple charging schedule
is created where a charging period and discharging period are
allocated. This schedule is nominal and does not take into
account the similarity in behavior between solar and load yet.
The charging start time is taken to be the second successive
hour of non-zero solar output and the discharging start time
is taken to be 3 hours from the maximum solar output.
Nominal charging and discharging are assumed to happen at
the manufacturer specified rates of the battery storage subject
to solar availability and demand constraints.

C. Correlation of the forecasts

The similarity in behavior between both 24-hr load forecast
and 24-hr solar output forecast can be obtained by calculating
Pearson’s correlation coefficient (p) as given in (5) where L;
and S; correspond to the mean values of load and solar output
data respectively.

YL — Li)(Si — S))
p =
VoL~ e (8- 5)

To track the change in correlation between both over time,
Pearson’s coefficient is calculated at every hour by considering
a a 3-hour window of forecasts centered around the current
hour.

®)

D. Refinement of correlation

The correlation predicted using the method in II-C can be
very different from the actual correlation as it compounds
the errors from both individual forecasts. Therefore, a method
to adjust the correlation values is developed using historical
correlation values that get recorded hourly. This method is
only used to adjust the correlation value of the current hour if
the previous hour’s predicted correlation and actual correlation
deviates by more than 20%. If such deviation is found, the
change in correlation from the previous hour’s actual value is
given as a series of weighted changes during that hour period
in the last six days as given in (6).

6
pi = pi—1+ Z(Of)d X (Pi—1-24d — Pi—24d)) (6)
d=1

Fig. 4 shows the correlation predicted from the solar and
load forecasts of January 5, 2021, and the following ad-
justment to the correlation made by the proposed method.
The refinement method had picked up the error in prediction
for 12:00 and kept on adjusting the correlation until 18:00,
resulting in a graph that is closer to the actual correlation

values compared to the original prediction.

E. Adjustments to charging schedule

Based on the refined correlation values the following adjust-
ments are made to the nominal charging schedule to improve
the utilization of the hybrid resource.

e During the nominal charging period, if the correlation

between solar and load is found to be negative, and the

Pearson Correlation between Load and Solar Output (3-hr window)

1.00 4 —— Actual
— Predicted
0.75 Refined
0.50

0.25

0.00

Correlation

—0.25

—0.50 4

—0.75 A

—1.00

tI] 5 1‘0 lIS Zb 2‘5
Time (hr)
Fig. 4: Predicted correlations and refined correlations for a
sample day

battery level is above 50%, charging rate is slowed down.
The solar output is shared between the battery (Pp) and
the houses (Py) as in (7).

Pp _1-1pl )
Py 19l
o During the nominal discharging period, if the correlation
between solar and load is found to be positive, and the
battery level is below 50%, the battery is allowed to
recharge rapidly, while still allowing for the solar output
to be shared with the houses as in (8).

Pgp D
o e ®)
P H 1— 1%

To prevent the battery storage from physical deterioration
due to high frequency of switching, the number of charge-
discharge cycles allowed per week is limited to 12.

III. TEST SYSTEM AND IMPLEMENTATION

For testing the proposed methodology, a rural town in
Kansas state was modeled to have a large-scale hybrid system
to supply a large portion of its load requirement'. It was
assumed that 1000 homes in this town is installed with solar
PV panels each of 3.8kW rating and facing south. The system
is assumed to be connected to a battery storage of 10MWh
capacity. The load and solar data corresponding to a one-year
period between December 2021 to November 2022 was used
for the study.

In order to compare the effectiveness of the proposed
methodology, two additional cases of battery charge schedul-
ing were implemented and tested. The cases and their assump-
tions are explained in sections III-A and III-B.

IThe test system was built based on proprietary data that was obtained
through a Non-Disclosure Agreement.
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Fig. 5: Annual Average Load and Solar output for 24 hours

A. Annual Fixed Charging

In this method, the battery charging schedule is decided
annually and is kept fixed throughout the year. Fig. 5 depicts
the average values of the loads and solar outputs encountered
at each hour of the day for the entire year. Based off these
values, the best times to start charging and discharging can
be decided by iterating through all possible combinations and
selecting the period that results in best correlation between
both curves during charging. The best combination of charging
and discharging periods for this case is given in Table I with
their corresponding Pearson correlation values. The discharge
period is only specified to calculate the correlation during non-
zero solar output period, but the battery is allowed to discharge
even past this period until it is completely drained.

TABLE I: Charging and Discharging periods for Annual Fixed
Charging case

Time Period | Correlation
Charging 08:00 - 15:00 0.936
Discharging | 15:00 - 21:00 0.146

B. Seasonal Fixed Charging

In this method the battery charging schedule is changed at
the start of every season to account for the seasonal variance
in weather which might affect the customer load patterns and
the available daylight hours. Fig. 6 depicts the average values
of the loads and solar outputs encountered at each hour of the
day for the entire year. Similar to the previous case, the best
times to start charging and discharging are decided as the best
possible combination with respect to the correlation between
both curves and are given in Table II with their corresponding
Pearson correlation values.

C. Correlation based Dynamic Charging

The methodology proposed in II is applied to the selected
test system. Fig. 7 shows the distribution of recorded charging
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Fig. 6: Seasonal Average Load and solar output for 24 hours
during a) Winter b) Spring ¢) Summer and d) Autumn

TABLE II: Charging and Discharging periods for Seasonal
Fixed Charging case

Season Time Period | Correlation
Winter 09:00 - 16:00 -0.56
16:00 - 19:00 -0.778
Spring 08:00 - 16:00 0.864
16:00 - 21:00 -0.028
Summer | 08:00 - 16:00 0.945
16:00 - 21:00 0.922
Autumn | 09:00 - 16:00 0.497
16:00 - 20:00 -0.729

and discharging start times in this case. It is evident from the
figure that the late hour charging scenario has happened a
considerable number of times, which in turn has resulted in
instances where battery had been discharging well into the
night.

IV. RESULTS

The three cases of battery storage charging schedules are
compared with each other using three different criteria.

A. Maximum rate of Import

At each hour the load demand that is in excess of the solar
output allocated for houses and the discharge from battery
storage has to be imported from the grid. . This is illustrated in
(9) where Pg refers to power imported from the grid, and Pr,
refers to the load. Reducing the maximum rate of import from
the grid reduces the likelihood of stressing the transmission
line used for importing.

Pgy=Pr— (Pu.+ Ppy) )
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Fig. 7: Charging and Discharging start times for correlation
based dynamic charging schedule

B. Total Cost

Overall expense that is incurred by the customers can be
found by multiplying the imported power by the locational
marginal pricing (LMP) at the corresponding transmission
node as in (10). In instances where the combined production
from the hybrid resource exceeds the load, the surplus is
exported back to the grid at the same LMP value.

E = (PGﬁtXLMPt)

1

T
(10)
t=

C. Battery Utilization Ratio

Battery Utilization Ratio (BUR) measures how much of
the battery storage’s available capacity was utilized to store
energy during the entire period of study. It can be given as
in (11) where SOCp; refers to the state of charge in the
battery at time ¢ and Cp refers to the installed capacity of
the battery storage. It is assumed that the battery does not
undergo degradation during the period of study and charge
retention does not vary with time.

S, 80CE,
T x CB

The results of the three charging schedules when they are
subject to the three metrics are presented in Table III

BUR = 1D

TABLE III: Comparison of the battery charging cases under
different performance metrics

Max Rate of | Total Cost | Battery Utilization
Import (kW) (USD) Ratio (%)
Annual Fixed 4556.13 743,686.0 0.0217
Seasonal Fixed 4556.13 742,020.9 0.0208
Correlation Based 4501.64 734,484.7 0.0228

From the results, it can be noted that the correlation based
dynamic charging schedule outperforms the other two fixed

charging schedules in all three metrics. It brought down
the overall expense for the year by 1% while reducing the
maximum rate of import and improving the battery utilization
ratio.

V. CONCLUSION

A solar PV-storage hybrid system has merits in improving
flexibility of adjusting intermittent generation. In this paper,
a method to charge the battery storage of the hybrid system
dynamically by taking the correlation between solar and load
is proposed. The method creates a nominal charging schedule
based on a full day forecast, and then makes changes to the
schedule based on the actual recorded correlation at every
hour. The efficiency of the proposed method was tested against
two fixed charging schedules in a rural town test system for-
one year period by using three performance metrics. The
results show that considering solar-load correlation for battery
storage can reduce the maximum power imported from the
grid, reduce the overall cost of import and improve the battery
utilization.
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